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Abstract. In the Gribov–Zwanziger scenario the confinement of gluons is attributed to an enhancement of
the spectrum of the Faddeev–Popov operator near eigenvalue zero. This has been observed in functional and
also in lattice calculations. The linear rise of the quark–anti-quark potential and thus quark confinement on
the other hand seems to be connected to topological excitations. To investigate whether a connection ex-
ists between both aspects of confinement, the spectrum of the Faddeev–Popov operator in two topological
background fields is determined analytically in SU(2) Yang–Mills theory. It is found that a single instan-
ton, which is likely irrelevant to quark confinement, also sustains only few additional zero-modes. A center
vortex, which is likely important to quark confinement, is found to contribute much more zero-modes, pro-
vided the vortex is of sufficient flux. Furthermore, the corresponding eigenstates in the vortex case satisfy
one necessary condition for the confinement of quarks.

PACS. 11.15.-q; 12.38.Aw

1 Introduction

The confinement of colored objects in QCD is still a chal-
lenging problem, although much progress has been made
in its understanding during the last few years [1, 2]. This
progress has been made along two directions, which seem
to be quite different at first sight. One is a confinement
scenario based on topological defects. The other is based
on the properties of field-configuration space, in the frame-
work of the Gribov–Zwanziger scenario. It is yet unclear in
which way both aspects are connected. The work presented
here is aimed at an investigation of a possible link, based on
the following set of observations.
The confinement of quarks is usually observed by

the existence of an – up to string breaking – linearly
rising quark–anti-quark potential. Already more than
thirty years ago it was conjectured that topological ex-
citations could be responsible for this behavior. Today,
substantial evidence in favor of this scenario exists [2].
This would be a very attractive realization, because such
excitations can carry topological charge and hence be
brought in contact with the spectrum of the Dirac op-
erator via the Atiyah–Singer index theorem [3, 4] and
thus to chiral symmetry breaking by the Banks–Casher
relation [5].
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However, the nature of these excitations or correspond-
ing topological defects is currently not finally resolved,
nor is its gauge dependence fully understood. Two of the
most important candidates for such configurations are
monopoles [2, 6, 7] and center vortices [2, 8, 9]. Vortices
seem to have slightly more attractive features in gen-
eral [2], and hence will be investigated here.
By construction, a non-interacting random ensemble

of vortices yields an area law [10]. Consequently, it has
been shown by several groups independently that removal
of center vortices removes quark confinement [2, 11–13].
In addition, this also restores chiral symmetry [13, 14].
Thus, vortices will be used here as an example of a quark-
confining topological field configuration.
On the other hand, instantons [15, 16], which play a role

in chiral symmetry breaking and hadro-dynamics [16–18],
do likely not contribute directly to quark confinement and
will be used here as an example of a quark-non-confining
topological excitation (but see e.g. [19] on the topic of in-
stantons and confinement).
The confinement of gluons is to some extent a more

subtle issue. As gluons carry adjoint color charges, string
breaking is always present. Thus, it is much more com-
plicated to judge whether gluons are confined or not. An
empirical criterion for gluon confinement is the Oehme–
Zimmermann super-convergence relation [20, 21]. It states
that a gluon is confined if its propagator vanishes at zero
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momentum. Such a behavior has been observed in Landau
gauge in calculations based on Dyson–Schwinger equa-
tions [1, 22–26] and renormalization group methods [27].
Corresponding observations have also been made in
Coulomb gauge using variational methods [28, 29]. Lattice
calculations have significant problems in reaching suffi-
ciently large volumes (see e.g. [30]), but there are indica-
tions on the largest, but highly asymmetric, lattices avail-
able [31, 32], which support a vanishing gluon propagator.
In three dimensions, where a similar behavior is found in
Dyson–Schwinger calculations [26, 33], much larger lattices
are possible. There, more substantial evidence has been
found in favor of such an infrared behavior of the gluon
propagator [34].
This behavior is predicted by the Gribov–Zwanziger

confinement scenario [26, 35–37]. The scenario starts from
the Gribov problem [35, 38]: due to the gauge freedom
in QCD, not all possible field configurations are indepen-
dent. It is therefore necessary to restrict the configuration
space. Usual local conditions like Landau gauge are only
sufficient in perturbation theory. Gribov proposed to re-
strict further to the first Gribov horizon, a compact region
around the origin, hence including perturbation theory.
This is the domain in field space where the Faddeev–Popov
operator1

Mab =−∂µ(∂µδ
ab+ gfabcAcµ) (1)

is positive. At the boundary, a zero eigenvalue appears,
which becomes negative outside the first Gribov region.
Here g is the gauge coupling and fabc are the structure
constants of the gauge group. This is not sufficient, as
gauge copies exist inside this region [39–41]. It is thus ne-
cessary to restrict even more to the fundamental modular
region [42], which has in part a common boundary with
the first Gribov region. Up to now, no local characteri-
zation of the fundamental modular region exists. A non-
local possibility [36] for such a characterization is to choose
the configuration on a gauge orbit which absolutely mini-
mizes ∫

d4x
(
Aaµ−A

a(n)
µ

)(
Aaµ−A

a(n)
µ

)
. (2)

HereinA
a(n)
µ is a n-instanton configuration to include fields

in different instanton sectors.
The Gribov–Zwanziger scenario utilizes the entropy ar-

gument that the volume of an infinite dimensional vol-
ume is concentrated at its border. Thus, the configurations
at the common boundary should dominate the partition
sum [36]. Hence, configurations with a vanishing deter-
minant of the Faddeev–Popov operator (1) dominate the
infrared, and the spectrum of this operator should have an
enhancement of zero-modes or near-zero-modes compared
to the vacuum case.
In Landau gauge, the expectation value of the Faddeev–

Popov operator is the inverse ghost propagator. Thus, the

1 As the topological field configurations are defined in Eu-
clidean space, it will be used exclusively here.

scenario predicts an infrared enhanced ghost propagator.
It can be shown quite generally that this prediction is
correct [43, 44]; it has also been confirmed in many cal-
culations [22–27,36], including lattice ones [45–47]. The
connection between such an enhancement of the spectrum
and an infrared divergent ghost propagator has also been
shown explicitly in lattice calculations [48]. Furthermore,
the scenario predicts that the infrared behavior of Yang–
Mills theory is dominated by the gauge-fixing part of the
action [36], which has been confirmed in Dyson–Schwinger
calculations [22–25]. In addition, the properties of the
ghost–gluon vertex have been found to agree very well with
this scenario [36, 49–51]. Similar relations hold in Coulomb
gauge, which have also been confirmed in functional and
lattice calculations [28, 29, 52].
Corresponding predictions are also given by a scenario

proposed by Kugo and Ojima [53], which is based on the
BRST symmetry. Especially, at least in Landau gauge, an
enhancement of the ghost propagator is predicted [54] and
therefore an enhancement of additional zero-modes in the
spectrum of the Faddeev–Popov operator. It is, however,
not yet clear if a connection between both scenarios exist.
These observations let it appear very promising to in-

vestigate analytically which type of connection between
quark-confining topological field configurations and an en-
hancement of zero- or near-zero-modes of the Faddeev–
Popov operator exists. This is also motivated by indepen-
dent results on this topic in lattice gauge theory [52]. As
a cross-check, it is interesting to study a configuration like
an instanton, which is probably not directly involved in
quark confinement.
This will be the content of this work: In Sect. 2, the

spectrum of the Faddeev–Popov operator in the vacuum
will be discussed, in order to fix the notation, for compar-
ison, and for the sake of completeness. The spectrum in
an one-instanton background will be determined in Sect. 3
and for in an one-center-vortex background in Sect. 4. In
Sect. 5, a necessary criterion for confinement will be tested
for the solution in the vortex case. The results and some
possible implications will be discussed in Sect. 6.

2 Vacuum

In the vacuum the Faddeev–Popov operator (1) is just the
negative of the 4-dimensional Laplacian times a unit ma-
trix in color space,

Mab =−δab∂2 =−δab
(
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
+
∂2

∂t2

)

=−δab
(
1

r3
∂rr

3∂r+
1

r2 sin2 η
∂η sin

2 η∂η

+
1

r2 sin2 η

(
1

sin2 θ
∂2φ+

1

sin θ
∂θ sin θ∂θ

))
(3)

=−δab
(
1

r
∂rr∂r+

1

r2
∂2θ +

1

ρ
∂ρρ∂ρ+

1

ρ2
∂2η

)
. (4)
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The second expression is given in hyper-spherical coordi-
nates

rµ = (x, y, z, t)
T (5)

= (r cosφ sin θ sin η, r sinφ sin θ sin η,

r cos θ sin η, r cos η)T ,

where φ ranges in [0, 2π) and θ and η range in [0, π). The
third expression is in bi-polar coordinates, essentially a set
of two polar coordinate systems,

rµ = (r cos θ, r sin θ, ρ cos η, ρ sin η)
T . (6)

In the vacuum the eigenmode equation is separable and
thus directly solvable.
In Cartesian coordinates, the eigenmodes, solutions of

the eigenequation

Mabφb = ω2φa

of the vacuum Faddeev–Popov operator, are plane waves
Ca exp(ikµrµ), and the spectrum is the continuum of pos-
itive real numbers ω2 with ω2 = kµkµ. Note that in the
vacuum the operator is positive definite. As these are free
states, they are non-normalizable and correspond to scat-
tering states in quantum mechanics. In the vacuum the
colors always decouple, and there is always a set of N2c −1
independent solutions. The only zero-modes are trivial,
constant functions, of which also N2c −1 linearly indepen-
dent ones exist.
In hyper-spherical coordinates, the eigenmodes can be

decomposed into partial waves with three independent in-
teger angular quantum numbers n, l, and m [55]. The
eigenmodes are then given by

φa(rµ) = C
a Jn(ωr)

ωr

P
l+1/2
n−1/2(cos η)

(cos2 η−1)1/4
Y lm(θ, φ) ,

where J are the Bessel functions and P are the associ-
ated Legendre functions of the first kind. Y lm are the or-
dinary spherical harmonics. A non-vanishing zero-mode is
only possible for n= l =m = 0. These are again constant
solutions.
However, further zero-modes, e.g. of the form Ca/r2,

also exist. These will not be admitted as they are in general
more singular than the gauge field configuration. This will
also be required when treating non-zero gauge field config-
urations below. This will imply that in the cases treated
here any admissible solution may not diverge at spatial
infinity.
In bi-polar coordinates, the problem separates into two

2-dimensional sets, one for each polar coordinate system.
As both angular coordinates are 2π-periodic, the solution
is

φa = CaJ|n|

(
ω
√
1− s2ρ

)
J|m|(ωsr) exp(i(mθ+nη)) .

(7)

Jn are again the Bessel functions. The angular quantum
numbersm and n are positive and negative integers includ-
ing zero and can be chosen independently for each color.

The continuous variable s, which ranges in [0, 1], “shifts the
eigenvalue” between both coordinate sets. Again there are
only trivial zero-modes, all constants: for ω = 0, only n =
m= 0 leads to non-vanishing values of the Bessel functions.

3 Instanton

3.1 Field configuration

The simplest case of a topological field configuration in
Yang–Mills theory is an instanton2. These are given as al-
gebra elements by [56]

Aµ =
2

r2+λ2
τµνrν ,

τµν =
1

4i
(τµτ̄ν − τν τ̄µ),

τµ = (iτ, 1),

τ̄µ = (−iτ, 1) ,

where λ characterizes the size of the instanton and τ i are
the Pauli matrices. The corresponding gauge fields are
given by the regular functions

Aaµ =
1

g

2

r2+λ2
rνζ

a
νµ . (8)

The constant real matrices ζa (the ’t Hooft tensors) form
the algebra

[
ζa, ζb

]
= 2fabcζc, (9){

ζa, ζb
}
=−δab . (10)

The instanton fields are transverse, ∂µA
a
µ = 0, and thus

admissible in Landau gauge. Furthermore, they are part of
the fundamental modular region as they trivially minimize
(2). Hence, the Faddeev–Popov operator should have only
positive or zero eigenvalues, which will be confirmed below.

3.2 Analytical treatment

Due to the structure of (8) and the transversality of the
field, the eigenvalue equation of the Faddeev–Popov oper-
ator in an instanton field can be written as

∂2φa+fabc
2

r2+λ2
rµζ

b
µν∂νφ

c =−ω2φa . (11)

Neither do the different colors decouple nor is the prob-
lem fully separable anymore. As it is possible to express
distances r in dimensionless variables r/λ, only the dimen-
sionless quantity ωλ is left as an independent parameter.
First of all, due to the transversality of the instanton

field, the three trivial constant zero-modes still exist.
To solve the set of equations (11), the first step is to

note that the expressions rµζ
a
µν∂ν are angular momentum

2 The remaining part of the article is restricted to SU(2)
Yang–Mills theory.
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operators. The eigenvalue equation can then be rewritten
as

0 = (∂2+ω2)φ1 (12)

+
2

i(r2+λ2)

(
(L34+L12)φ

2+(−L24+L13)φ
3
)
,

0 = (∂2+ω2)φ2 (13)

+
2

i(r2+λ2)

(
− (L34+L12)φ

1+(L14+L23)φ
3
)
,

0 = (∂2+ω2)φ3 (14)

+
2

i(r2+λ2)

(
(L24−L13)φ

1− (L14+L23)φ
2
)
,

Lαβ = i(xα∂β−xβ∂α) .

The angular momentum operators satisfy the commuta-
tion relations

[Lαβ , Lγδ] = i(δβγLαδ+ δαδLβγ+ δβδLγα+ δαγLδβ) .

This implies that any solution which only depends on r
does not feel the presence of the instanton and is the same
solution as in the vacuum. Thus, there exists a continuous
positive spectrum, as expected. Furthermore, the Lapla-
cian can be written as [55]

∂2 =
1

r3
∂rr

3∂r−
1

r2

∑
1≤α<β≤4

LαβLαβ . (15)

As only three particular linear combinations of the six an-
gular momentum operators appear, it is possible to define
the set of operators

L1 =
1

2
(L14+L23),

L2 =
1

2
(L13−L24),

L3 =
1

2
(L34+L12) ,

which form a 3-dimensional spin-algebra

[La, Lb] = ifabcLc .

In addition, explicit calculation shows that

L2 = (L1)2+(L2)2+(L3)2

=
1

4

∑
1≤α<β≤4

LαβLαβ

+
1

2
(L14L23−L13L24+L12L34) .

The second term vanishes. Thus, the angular part of the
Laplacian operator can be replaced by 4L2. We have

∂2 =
1

r3
∂rr

3∂r−
4L2

r2
.

Hence, the problem can be separated in a radial part and
an angular part. The latter can be characterized by two

independent quantum numbers l and m. Selecting L3 as
“quantization” axis3, the eigenfunctions depend on l, de-
noting an “orbital angular momentum”, which can be in-
teger or half-integer. The “magnetic” eigenstates are then
counted by m. In principle, each color could have its own
angular momentum l, but in (12)–(14) no operator appears
which can change l. So to compensate the angular depen-
dencies, each color has to have the same l-value for a solu-
tion, and L2 can be replaced by l(l+1) as its eigenvalue.
Thereby each of the equations splits in two parts,

0 =

(
1

r3
∂rr

3∂r−
4l(l+1)

r2
+ω2

)
φ1

+
4

i(r2+λ2)

(
L3φ2+L2φ3

)
,

0 =

(
1

r3
∂rr

3∂r−
4l(l+1)

r2
+ω2

)
φ2

+
4

i(r2+λ2)

(
−L3φ1+L1φ3

)
,

0 =

(
1

r3
∂rr

3∂r−
4l(l+1)

r2
+ω2

)
φ3

+
4

i(r2+λ2)

(
−L2φ1−L1φ2

)
.

Using a matrix representation for the angular momentum
operators, this system can be written as a matrix equation

(1Dr+LI)φ= 0 . (16)

The dimensionality of the vector φ is 3(2l+1), representing
the three colors and the (2l+1) independent m-quantum
numbers.Dr collects the radial derivatives and terms after
multiplication with r2+λ2. 1 denotes the unit matrix in
this space and LI is the hermitian matrix

LI =
4

i

⎛
⎝ 0 L3 L2

−L3 0 L1

−L2 −L1 0

⎞
⎠ . (17)

Expanding the solution φ in the eigenbasis {li} of LI as∑
φli(r)li completely decouples the angular and radial

parts, leading to the radial equation

(Dr+ ci)φli(r) = 0 . (18)

Here, the ci are the eigenvalues of the corresponding eigen-
vector. The eigenvalue problem is a typical spin prob-
lem. In general, there are 3(2l+1) eigenvalues, which can
be either positive or negative or eventually zero. Note
that in the case l = 0 the solution are functions depen-
dent only on r, as already discussed above. Therefore, only
l ≥ 1/2 will be regarded here. The eigenvectors will not be
needed to determine the spectrum, but could be obtained

3 This is the axis characterizing rotations in the 1–2 and
3–4 planes around the same angle. In fact bi-polar coordinates
would be the natural way to solve this problem explicitly in
terms of r2+ρ2, r/ρ and θ+η. However, this will be not neces-
sary for the purpose at hand.
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in a direct way. However, to solve the radial equation (18),
the eigenvalues have to be determined. A close inspection
of the eigenvalue problem yields the characteristic poly-
nomial of (17) as

(c−4)2l+1(c+4l)2l+3(c−4(l+1))2l−1 = 0 .

Hence there are only three different eigenvalues ci: 4, −4l,
and 4(l+1) with multiplicities 2l+1, 2l+3, and 2l− 1,
respectively. The radial solution does not depend on the
multiplicity index and φli can be replaced by φlc. With
this, the radial equation can finally be written down as

0 =
1

r3
∂rr

3∂rφlc+

(
ω2−

4l(l+1)

r2
+

c

r2+λ2

)
φlc . (19)

The only differences between the different colors are then
their components along the quantization axis and thus their
composition in terms of the different magnetic eigenstates:
The different colors are rotated with respect to each other.
A first step to solve the ordinary differential equation

for the radial part (19) is to investigate the asymptotic
properties in order to study the existence of admissible so-
lutions. At small r, the only relevant part is the angular
part, leading to the simpler equation

0 = ∂2rφlc+
3

r
∂rφlc−

4l(l+1)

r2
φlc .

This equation is independent of c and ω2. It is solved by

φ(r) =r→0 C1r
2l+C2r

−2(l+1) ,

with C1 and C2 integration constants. Therefore, there ex-
ists only one solution which is regular at the origin, and
there is no more than one non-singular solution for the dif-
ferential equation (19). The homogeneity of the differential
equation then implies that the only remaining integration
constant is an over-all normalization factor.
At large distances only the part containing the eigen-

value in (19) is relevant as long as ω2 is non-vanishing.
Thus, the simpler differential equation

∂2rφlc+
3

r
∂rφlc+ω

2φlc = 0

has to be treated. This is just the equation for l = 0, which
is solved by Bessel functions of the first and the second
kind. In this case the second solution is also admissible, as
the behavior at the origin is not relevant, yielding

φacl→D1
Jn(ωr)

r
+D2

Yn(ωr)

r
. (20)

D1 andD2 are new integration constants. In principle, (20)
allows one to construct finite solutions for any positive or
negative ω2 by an appropriate choice of D1 and D2. Thus,
besides showing that the long-range regular solutions will
be of type cos(r/λ+ δ)/r3/2, (20) does not provide fur-
ther information. It is therefore necessary to obtain an ex-
plicit solution for the differential equation (19). Making the
ansatz φlc = r

2lwlc(r), and expanding then wlc(r) in pow-

ers of r/λ, this is straightforward. The general solution for
any ω2, l, and c is given by

φlc = r
2l
∞∑
n=0

an

(
−
r2

λ2

)n
, (21)

a−1 = 0,

a0 =D,

an =
ω2λ2(an−1−an−2)

4n(n+1)+8ln

+
((4n+8l)(n−1)+ c)an−1

4n(n+1)+8ln
.

Here D is the free overall normalization factor. Unfortu-
nately, this series is similar to the hyper-geometric series,
and its convergence4 cannot be checked easily for r > λ.
It is therefore necessary to perform a numerical analysis,
which will be done in Sect. 3.3.

3.3 Results

Beforehand, it is worthwhile to treat the case ω2 = 0 explic-
itly. The equation

0 = ∂2rφ
a
lc+
3

r
∂rφ

a
lc+

(
−
4l(l+1)

r2
+

c

r2+λ2

)
φalc = 0

is directly solvable, and yields the hyper-geometric func-
tions

φlc(r) = C1

(
λ2

r2

)1+l
2F1

(
−
1

2
− l−

1

2

√
1− c+4l+4l2,

−
1

2
− l+

1

2

√
1− c+4l+4l2,−2l,−

r2

λ2

)

+C2

(
r2

λ2

)l
2F1

(
1

2
+ l−

1

2

√
1− c+4l+4l2,

1

2
+ l+

1

2

√
1− c+4l+4l2, 2+2l,−

r2

λ2

)
.

As 2F1(α, β, γ, 0) = 1, the first of these solutions is singu-
lar at the origin and can be dismissed. The second solution
is regular. Thus, it remains to investigate its long-distance
behavior. Using an identity for the hyper-geometric func-
tions [57], the expression can be rewritten as

(
r2

λ2

)l(
1+
r2

λ2

)−( 12+l− 12√1−c+4l+4l2)

× 2F1

(
1

2
+ l−

1

2

√
1− c+4l+4l2,

3

2
+ l−

1

2

√
1− c+4l+4l2, 2+2l,

r2

λ2

r2

λ2
+1

)
.

4 To be precise: As this is a solution to an initial value prob-
lem for a smooth differential equation, the series is guaranteed
to exist and converge for any finite r. This, however, does not
prevent a divergence for r→∞.
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For r→∞, the hyper-geometric function is then a constant
for all eigenvalues. The pre-factor is finite at spatial infinity
only for l = 1 and c = 8 with multiplicity one and l = 1/2
and c = 4 with multiplicity two. In these cases the zero-
modes can be given in closed form and read for l = 1/2

φ 1
2 4
(r) = 2D

− r
2

λ2
+
(
1+ r

2

λ2

)
ln
(
1+ r

2

λ2

)
r3

λ3

and for l = 1

φ1 8(r) = 3D

r4

λ4
+2 r

2

λ2
−2
(
1+ r

2

λ2

)
ln
(
1+ r

2

λ2

)
r4

λ4

.

No further zero-modes exist for larger l or for any other
eigenvalue c. Hence, the instanton sustains six zero-modes
in total, the three trivial ones at l = 0, two for l = 1/2 and
one for l = 1.

Fig. 1. The radial eigenfunctions φlc for l = 1/2 and the two
different c values. For better visualization, positive ω2 solu-
tions have been normalized such that their maximum is 3,
while modes with ω2λ2 ≤ 0 have been normalized such that
φlc/r

2l|r=0 = 1

These results can be supported by numerical calcula-
tions. A selection of numerical results5 is shown in Fig. 1
for l = 1/2 and in Fig. 2 for l = 1 for the possible values
of c and various values of ω2λ2. Calculations at larger l
or other values of ω2λ2 confirm these findings. No further
zero-modes exist.

3.4 Singular gauge

It is an interesting question to which extent these findings
are gauge dependent. In general, different gauges lead to
much more complicated differential equations, especially if
the field configuration is no longer transverse afterwards.
In the case of the instanton, it is possible to check at least
one other gauge. Performing the gauge transformation [56]

G(x) =
τµrµ

r
,

the instanton field configuration is given by [56]

Aµ =
2λ2

r2(r2+λ2)
τ̄µνrν ,

τ̄µν =
1

4i
(τ̄µτν − τ̄ντµ) .

This gauge transformation has the property to move the
non-trivial behavior from infinity to a finite region, at
the cost of a small-distance divergence. In a sense, this
gauge transformation is one of the most severe changes
which can be done to the global, and thus long-range and
confinement-relevant, properties of a gauge field configura-
tion. Therefore, it is an important test of the results found
above.
The problem can be treated along the same lines as be-

fore, but as the field configuration now diverges as 1/r2 at
the origin, corresponding eigenfunctions have to be admit-
ted. It is then still possible to separate the angular struc-
ture, and the equations turn out to be the same as (16),
except for a different quantization axis (which nonetheless
can be called L3). In addition, an additional factor of r2/λ2

appears in the radial part. Thus, the same angular solu-
tions are found, and the radial equation takes the form

0 =
1

r3
∂rr

3∂rφlc+

(
ω2−

4l(l+1)

r2
+

cλ2

r2(r2+λ2)

)
φlc

with the same values of c as before. The solutions of this
equation differ qualitatively from their previous counter-
parts only by an admitted divergence at zero, and they are
given in explicit form for ω2 �= 0 by

φlc = r
−1+
√
(2l+1)2−c

∞∑
n=0

an

(
r2

λ2

)n
,

5 These were obtained by summing up the series explicitly for
r/λ < 1. At some point rs, the series was used to find initial
values for the differential equation, which was then solved by
a Cash–Karp Runge–Kutta algorithm [58]. This was necessary
due to explicit divergencies of the angular term in the differen-
tial equation at 0. Otherwise the numerical solution could have
been obtained by the integration method alone.
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Fig. 2. The radial eigenfunctions φlc for l = 1 and the three
different c values. For better visualization, positive ω2 solu-
tions have been normalized such that their maximum is 3,
while modes with ω2λ2 ≤ 0 have been normalized such that
φlc/r

2l|r=0 = 1

a−1 = 0,

a0 =D,

an =
([
(c−λ2ω2)−4(n−1)2−2(n−1)

√
(2l+1)2− c

]

×an−1−λ
2ω2an−2

) 1

2n
(
2n+

√
(2l+1)2− c

) .

There are three non-trivial zero-modes, at exactly the same
values of l and c, reading

φ 1
2 4
=
D

2

1+
(
1+ r

2

λ2

)
ln
(

r2

r2+λ2

)
r
λ

,

φ1 8 =D
1+2 r

2

λ2
+2
(
r2

λ2
+ r

4

λ4

)
ln
(

r2

r2+λ2

)
r2

λ2

.

These solutions decay faster than in the regular case and
are even square-integrable and therefore normalizable and
localized.
Note that there are now three additional zero-modes at

l= 0, φ(r)0 0 =C
a/r2, which previously have been rejected

in a non-singular field configuration. These are also triv-
ial zero-modes, in the sense that they already exist in the
vacuum, and the number of non-trivial zero-modes is the
same.
Hence, the non-trivial properties of the spectrum

are not affected by this gauge transformation. This is
not entirely expected, as the Faddeev–Popov operator is
gauge dependent, and the chosen gauge transformation
severely affects the long-distance properties of the field
configuration.

4 Center vortex

4.1 Field configuration

In this section the spectrum of the Faddeev–Popov opera-
tor will be studied in the background of a thick, oriented
center vortex. The vortex field used here provides a non-
trivial Wilson loop in the fundamental representation of
the gauge group. The field strength of such a vortex in
SU(2) is given by [59, 60]

Aaη = δ
3a 1

g

µ(ρ)

ρ
.

All other components vanish6. This field is transverse. The
function µ(ρ) varies from zero at ρ= 0 to zero at ρ=∞ for
a flux 0 vortex. For higher fluxes, it varies from zero at ρ=
0 to the flux 2n+1 at ρ=∞. Herein, n is a positive integer
or zero. There is no further specification of this “profile” of
the vortex. For the results, several different “profiles” will
be compared. The only assumption made will be that they
are smooth.
This type of center vortices are energy minimizing

configurations after including first order quantum ef-

6 In principle, it would be possible that there is a non-
vanishing component Aρ. Such a component can be removed by
choosing a suitable gauge [59, 60].
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fects [59, 60]. At the classical level, only instantons are such
solutions.

4.2 Analytical treatment

The natural coordinate system for this problem are bi-
polar coordinates (6). The three eigenvalue equations for
the three colors are then given by

−∂2φ1−
µ

ρ2
∂ηφ

2 = ω2φ1,

−∂2φ2+
µ

ρ2
∂ηφ

1 = ω2φ2,

−∂2φ3 = ω2φ3 .

The equation for the 3-component decouples and thus is
solved by the free solution (7). This implies that φ3 be-
comes constant for any zero-mode. It thus remains to solve
the coupled equations for the eigenfunctions of colors one
and two. For these the behavior in r− θ, in which they are
trivial, and ρ−η decouple. The equations are then reduced
to a 2-dimensional problem:(

1

ρ
∂ρρ∂ρ+

1

ρ2
∂2η+ω

2(1− s2)

)
φ1+

µ

ρ2
∂ηφ

2 = 0,

(
1

ρ
∂ρρ∂ρ+

1

ρ2
∂2η+ω

2(1− s2)

)
φ2−

µ

ρ2
∂ηφ

1 = 0 .

As the angle η is 2π-periodic, it is possible to expand the
eigenfunctions in a Fourier-series as φa =

∑
m c
a
m exp(imη).

This yields

0 =
∑
m

((
1

ρ
∂ρρ∂ρ−

m2

ρ2
+ω2(1− s2)

)
c1m

+
imµ

ρ2
c2m

)
exp(imη) = 0, (22)

0 =
∑
m

((
1

ρ
∂ρρ∂ρ−

m2

ρ2
+ω2(1− s2)

)
c2m

−
imµ

ρ2
c1m

)
exp(imη) . (23)

Only the equations for the same m are coupled, as η is ar-
bitrary, and it suffices to solve the equations for each m
separately.
At m= 0 the system decouples, as it is reduced to the

free case. Consequently, this yields ca0 = C
aJ0
(
ω
√
1− s2ρ

)
as a solution. This implies that s is again constrained to 0≤
s≤ 1, which is confirmed by the large ρ solution. Thus, m
can be taken non-zero in the following.
Since µ goes to zero at the origin, the angular term

m2/ρ2 dominates, just as in the case of the instanton. The
solution is then similarly given for small7 ρ by

cam ∼ A
aρ|m|+Baρ−|m| , (24)

7 “Small” is here determined by the typical scale of the pro-
file function µ. Whenever there is a notion of large and small,
this will be with respect to this intrinsic scale, which is only
determined if the function µ is given explicitly.

with integration constants Aa and Ba. As for all profiles
the field configurations vanish at the origin faster than
1/ρ, the second solution is dismissed. This requires two of
the four free (complex) integration constants. As the dif-
ferential equations are homogeneous in the functions, the
remaining integration constants are again scale factors.
At very large distances for non-zero ω, the eigenvalue

term dominates. The equations decouple and in this case
the eigenfunctions will behave, as in the free case, like
Bessel functions. Thus, for finite ω the influence of the
vortex is only relevant at intermediate distances. The situ-
ation is different in the case of a zero-mode, and will be
treated below.
To make progress with the solution, it is useful to

rewrite (22)–(23) with explicit real and imaginary parts.
Then the equations for the four independent real functions
bam+ie

a
m = c

a
m become

(
1

ρ
∂ρρ∂ρ−

m2

ρ2
+ω2(1− s2)

)
b1m−

mµ

ρ2
e2m = 0, (25)(

1

ρ
∂ρρ∂ρ−

m2

ρ2
+ω2(1− s2)

)
e1m+

mµ

ρ2
b2m = 0, (26)(

1

ρ
∂ρρ∂ρ−

m2

ρ2
+ω2(1− s2)

)
b2m+

mµ

ρ2
e1m = 0, (27)(

1

ρ
∂ρρ∂ρ−

m2

ρ2
+ω2(1− s2)

)
e2m−

mµ

ρ2
b1m = 0 . (28)

Highly advantageously, the equations decouple into two
sets of equations, which only differ by the sign ofm. There-
fore b1m ∼ b

2
−m and e

1
m ∼ e

2
−m, and it suffices to solve the

first and fourth equation of (25)–(28). As now the last term
has the same sign, it is again possible to decouple the equa-
tions by looking for solutions of type b+m = b

1
m+ e

2
m and

b−m = b
1
m− e

2
m. The original functions can be recovered by

b1m =
1

2
(b+m+ b

−
m),

e2m =
1

2
(b+m− b

−
m) .

Note that the scale constant for the two solutions b±m can
be selected independently: it is possible to have b1m =±e

2
m.

The decoupled equations are then

(
1

ρ
∂ρρ∂ρ−

m2

ρ2
+ω2(1− s2)

)
b+m−

mµ

ρ2
b+m = 0,(

1

ρ
∂ρρ∂ρ−

m2

ρ2
+ω2(1− s2)

)
b−m+

mµ

ρ2
b−m = 0 .

These equations are the same up to the sign of m, yield-
ing b+m = b

−
−m. Note especially that for b

1
m and e

2
m to be

convergent simultaneously, at least b+m or b
−
m has to be con-

vergent. A cancellation of divergencies if both are divergent
is not possible. Hence it finally suffices to solve the single
equation

(
1

ρ
∂ρρ∂ρ−

m2

ρ2
+ω2(1− s2)

)
b+m−

mµ

ρ2
b+m = 0 . (29)
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The small-ρ solution for b+m is the same as before, (24). At
large ρ the same applies as previously, but it is now more
interesting to treat the zero-modes. In this case the equa-
tion at large ρ is given by (µ(∞) = 2n+1 for a vortex of
flux 2n+1)

(
1

ρ
∂ρρ∂ρ−

m2+m(2n+1)

ρ2

)
b+m = 0 .

Sincem is integer, there are three possibilities.
First, ifm2+(2n+1)m> 0, which is the case form> 0

orm<−(2n+1), the solution is given by ρ±
√
m2+m(2n+1).

It then remains to determine whether the small-ρ conver-
gent solution connects to the large-ρ convergent solution or
not. It will turn out that the convergent small-ρ solution
connects to the divergent large-ρ solution and vice versa.
Thus this type of solution cannot lead to an admissible
zero-mode.
Second, if (2n+1)m=m2, which is possible for nega-

tive, odd m, the second term vanishes, and the solution
is of type c+ln(r). It is again important to determine
whether the small-ρ convergent solution connects to the
constant or divergent solution. Again it will turn out that
a small-ρ convergent solution connects to a large-ρ diver-
gent one.
The last possibility is m2+(2n+1)m< 0, which is the

case for m negative and |m| < (2n+1). This is only pos-
sible for n > 0, and only flux 3 and higher vortices can
produce such solutions. This yields a large-ρ behavior of

b+m =ρ→∞ C1 cos
(√
|m2+m(2n+1)| ln(ρ)

)

+C2 sin
(√
|m2+m(2n+1)| ln(ρ)

)
.

Although this is not vanishing, it is finite. In these cases
there exist finite zero-modes, as will be confirmed below.
So, 2n permitted absolute values of m exist for each n.
Due to the different angular structure, positive and nega-
tive m solutions are independent. Hence, all in all 4n zero-
modes for a vortex of flux 2n+1 exist. E.g. for n= 1 there
are for the +-function one for −1 and one for −2. For
m=−3,m2+(2n+1)m= 0. In addition, there are two for
the −-function for m= 1 and m= 2. Note that for n= 0
the vortex has a non-vanishing flux of 1 but does not sup-
port any zero-modes. The angular quantum number of the
r–η part of the solution has to be zero and thus does not
increase the multiplicity.
Furthermore, neither the small nor the long-distance

behavior depends on the specific form of µ(ρ): the existence
and number of zero-modes is independent of the vortex
profile; only the total flux is relevant.
It is finally necessary to obtain the intermediate range.

To perform this task, (29) has to be solved. As in the
case of the instantons, this is possible using a series ex-
pansion, provided a series expansion of µ=

∑
i µiρ

i exists
(which will necessarily have µ0 = 0). This condition is very
reasonable for a smooth function going form 0 to 2n+
1 without any singularities. The solution of (29) is then

given by

b+m = ρ
|m|

∞∑
n=0

b+mnρ
n, (30)

b+m−1 = 0,

b+m0 =D,

b+mn =
−ω2(1− s2)b+mn−2+m

∑n−1
i=0 b

+
mn−1−iµ1+i

n2+2n|m|
.

Unfortunately, as in the instanton case, this is again a se-
ries of hyper-geometric type, and it is not practical to use
it for explicit calculations for large ρ. This will again be
remedied by use of a numerical treatment.

4.3 Results

The calculations above are confirmed by a numerical calcu-
lation, using the same techniques as in the instanton case.
A flux 0 vortex of profile µ= ρλ/(λ2+ρ2) and a flux 1 vor-
tex of profile µ= ρ/(λ+ρ) do not sustain zero-modes. The
results for a flux 3 vortex and a representative selection of
m- and ω2(1− s2)-values are shown in Fig. 3. It is clearly
visible how at negativem the different convergent solutions
appear, confirming the analytical calculations. This is even
more evident in Fig. 4, where the zero-modes for flux 3 and
flux 5 vortices with the profile (2n+1)ρ/(λ+ρ) are shown
as a function of r andm.
Further calculations have been performed with other

vortex profiles8, taken from [59, 60], e.g. µ= exp(−ρ/λ−
λ/ρ), µ = (2n+1) exp(−λ3/ρ3) and µ = ρ6/(λ6+ ρ6).
These calculations do not yield qualitatively different re-
sults than the above findings.

5 A confinement criterion

In [52] it has been argued that the criterion

lim
ω2→0

γ(ω2)F (ω2)

ω2
> 0 (31)

is in Coulomb gauge a necessary criterion for confinement,
although not sufficient. A fulfillment leads to a divergent
energy of an unscreened color charge. This is of course not
the ground state of QCD, but this must occur in a confin-
ing theory. The quantity γ is the density of eigenmodes at
eigenvalue ω2, and the function F is the expectation value
of the negative Laplace operator in the eigenstates of the
Faddeev–Popov operator to eigenvalue ω2. The derivation
of this condition only applies in Coulomb gauge. Thus, this
criterion cannot be applied to the instanton configuration,
but only to the center-vortex configuration, when the vor-
tex is taken to be not aligned in the time direction.

8 Some of these profiles do not have a simple series expan-
sion, so (30) is only of a limited value. Nonetheless, these are
amendable to numerical calculations, and the results do not dif-
fer qualitatively from profiles where a simple expansion exists.
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Fig. 3. The radial eigenfunctions b+m for differentm and ω
2(1−

s2)-values in a flux 3 vortex. For better visualization, positive
ω2 solutions have been normalized such that their maximum
is 3, while modes with ω2 ≤ 0 have been normalized such that
b+m/ρ

|m||ρ=0 = 1

In the following the criterion will be studied for the
vacuum, the instanton (which will be included for com-
pleteness), and the vortex.

Fig. 4. The radial zero-modes b+m for differentm in a flux 3 vor-
tex in the top panel and in a flux 5 vortex in the bottom panel.
The solutions have been normalized such that b+m/ρ

|m||ρ=0 = 1

5.1 Vacuum

The eigenfunctions in the vacuum are plane waves. There
are no non-trivial zero-modes, γ(0) = 0 (in fact, it vanishes
as∼ ω [52]). Hence, it remains to determine the function F .
In [52] it is given by

F (ω2) =−
∑
n

∫
d4xφa∗ω2 n(x)∂

2φaω2 n(x) ,

where φa
ω2 n
is the nth eigenstate to the eigenvalue ω2. In

an infinite volume, this has to be normalized differently as

F (ω2) =−

∑
n

∫
d4xφa∗

ω2 n
(x)∂2φa

ω2 n
(x)∑

n

∫
d4xφa∗

ω2 n
(x)φa

ω2 n
(x)

.

The corresponding calculations for the eigenfunctions
Ca exp(ikaµxµ), with k

2 = ω2, can then be done explicitly to
yield

F (ω2) =
k2
∑
a |ca|

2
∫
d4x
∫
d3Ω∑

a |ca|
2
∫
d4x
∫
d3Ω

= k2 ≡ ω2 . (32)
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Thus, F (ω2) = ω2, as already stated in [52]. Consequently,
the condition (31) is not fulfilled, as γ(ω2) ·ω2/ω2 = 0 as
ω2→ 0, since γ(0) = 0.

5.2 Instanton

In cases with a non-trivial gauge field, the situation is more
complicated. In both cases treated here the eigenfunctions
are eigenstates of the angular momentum operator, and it
would be possible (and in fact has been done) to calculate
the condition explicitly, at least for ω2 = 0. This is not very
enlightening, and a different way is pursued here. Note first
that γ(0) �= 0, as there exist for the instanton as well as
for the vortex non-trivial zero-modes. Furthermore, as the
states are eigenstates of the Faddeev–Popov operator, it
follows that (for transverse configurations)

−φa∗ω2 n∂
2φaω2 n = ω

2φa∗ω2 nφ
a
ω2 n+f

abcAbµφ
a∗
ω2 n∂µφ

c
ω2 n .

F is then given by

F (ω2) = ω2+

∑
n

∫
d4xfabcAbµφ

a∗
ω2 n
∂µφ

c
ω2 n∑

n

∫
d4xφa∗

ω2 n
φa
ω2 n

,

and the vacuum result follows directly without any calcula-
tion. It is furthermore clear that if the gauge field and thus
the eigenmodes are regular everywhere, the second term
has to be behave as −ω2 for ω2→ 0 in order to prevent
the fulfillment of (31) in case of a non-zero level-density at
ω2 = 0.
In the instanton case, the eigenmodes are eigenfunc-

tions of fabc(x2+λ2)Abµ∂µ. Using then the orthogonality of
the angular part of the eigenfunctions to perform the angu-
lar integrations yields

F (ω2) = ω2+

∑
n

∫
x3dxfabc 4cn

x2+ω4
φa
ω2 n
φa
ω2 n∑

n

∫
x3dxφa

ω2 n
φa
ω2 n

.

With the known exact formulas for the radial part, the in-
tegrations can be performed exactly but yield a lengthy
expression involving several poly-logarithms. This expres-
sion, however, vanishes in the infinite volume limit, in
accordance with a numerical integration. In this case
F (ω2) = ω2, as in the vacuum. Although now (31) is ful-
filled, nothing is implied by this, as the instanton is not
a Coulomb gauge configuration. Still, this result is not
quite the one which would be naively expected for an in-
stanton, but it is not so surprising when considering the
presence of zero-modes.

5.3 Vortices

Different Fourier modes are not coupled by the gauge field.
Therefore, it follows that

fabc
δb3µ(ρ)

ρ2
φa∗ω2 mn∂ηφ

c
ω2 mn

= fa3c
µ(ρ)

ρ2
φa∗ω2 mn∂ηφ

c
ω2 mn

=
imµρ

ρ2
(
φ2∗ω2 mnφ

1
ω2 mn−φ

1∗
ω2 nmφ

2
ω2 mn

)

=
2mµ(ρ)

ρ2

(
b1ω2 mne

2
ω2 mn− b

2
ω2 mne

1
ω2 mn

)
.

In the last line the notation of the previous calculations
has been used. Such contributions exist for all allowed m-
values. As the eigenfunctions are independent but have
a common long-range behavior, the fraction in F only van-
ishes if the denominator scales with a larger power of the
volume than the numerator. Otherwise any desired result
could be obtained by an appropriate choice of the indepen-
dent normalization constants. In the denominator this is
of no importance, as the integrated functions are positive
semi-definite. Thus, no singularity can be constructed. In
addition, from the trivial two dimensions, each term is mul-
tiplied by a factor stemming from a free-wave solution, i.e.
a term proportional to the square root of the volume, which
cancels out.
The zero-modes all behave essentially similar to

ρ|m|

λ|m|+ρ|m|
cos

(√
|m2+m(2n+1)| ln

(
ρ+λ

λ

))
,

where the scale λ is set by the function µ. Numerical inte-
gration shows (when µ is majorized by a constant) that the
numerator scales like the logarithm of the volume while the
denominator scales as the square root of the volume. This
is as anticipated due to the explicit factor of 1/ρ2.
Thus, independent of the selected normalization con-

stants, the second term in F vanishes like ln(V )/V 1/2, leav-
ing again only F (ω2) = ω2. Since for vortices with fluxes
higher than 1 the level-density does no longer vanish at
zero, the condition (31) is fulfilled. As these are Coulomb
gauge configurations, this necessary confinement criterion
is met.
It should be noted that the result is not the same as

on a finite lattice in a thin-center-vortex-only configura-
tion [52], which seems to indicate a finite value of F (0).
However, this depends significantly on the volume, and
from the available ones, it cannot be excluded that F (0)
does not vanish in the infinite-volume limit also in lattice
calculations.

6 Discussion and conclusions

Summarizing, the spectrum of the Faddeev–Popov opera-
tor in a one-instanton background field has the following
features: it is positive semi-definite. It has a continuous
spectrum of positive eigenvalues, just as in the vacuum,
but with a different angular structure. The (infinite) de-
generacy of non-zero eigenvalues does not depend on the
eigenvalue, and there is no enhancement of eigenmodes
near zero, but only at zero. Three new zero-modes exist
at “angular momentum” l = 1/2 and l = 1. This number
is independent of the instanton size λ, which is the only
characteristic quantity of an instanton. Thus the instanton
belongs to the first Gribov horizon, the boundary of the
first Gribov region.
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Furthermore, the configuration is, due to (2), also part
of the fundamental modular region and lies on the common
boundary of the first Gribov horizon and the fundamen-
tal modular region. Hence, it is contained within the region
of field-configuration space which is responsible for gluon
confinement according to the Gribov–Zwanziger scenario.
Still, the one instanton field does not lead to a significant
enhancement of the number of zero-modes, as required by
the Gribov–Zwanziger scenario. It is therefore likely not
alone, if at all, responsible for, or even involved in, gluon
confinement.
Still, it is tempting to speculate whether an n-instanton

configuration, consisting of far separated instantons, could
be able to support 3n independent zero-modes. The radial
structure supports this, as at sufficiently far distances ra-
dial eigenmodes behave like the vacuum solution or vanish.
But the intricate angular variations, which still exist at in-
finity, makes it far from obvious that a multi-instanton con-
figuration does sustain more zero-modes. Only the l = 1/2
solution shows any sign of localization and may thus be
a candidate for a relevant multi-instanton solution.
Hence, it cannot yet be completely concluded that in-

stantons are irrelevant to gluon confinement. Therefore, it
would be interesting to study this connection also in lat-
tice gauge theory. This is, however, made complicated due
to the appearance of sub-structure of topological defects on
toroidal manifolds, which has been seen e.g. in connection
with Kraan–van Baal calorons [61, 62] in lattice calcula-
tions [63–68]. Digressing, this raises the very interesting
question if in these cases any influence on the eigenspec-
trum of the Faddeev–Popov operator will be due to the
constituents or will arise as a feature of the bound states.
On the other hand, a vortex of sufficiently high flux

can sustain an arbitrary number of zero-modes. However,
a vortex of flux 1 is not sufficient for this; a larger flux is ne-
cessary. Only flux 3 or higher vortices belong to the Gribov
horizon, while vortices with lower flux are only part of the
interior of the first Gribov region. Thus, vortex configura-
tions, if they belong to the fundamental modular region9,
could contribute to the enhancement of the spectrum of
the Faddeev–Popov operator and even be its main source.
This is again only an enhancement at eigenvalue zero, as
the (infinite) degeneracy of non-zero modes is again not de-
pendent on the eigenvalue.
The fact that a single vortex can sustain a large number

of zero-modes is different from the instanton case, where
a single instanton was not able to support more than three
zero-modes, irrespective of its size. This is to some extent
surprising, as it has been shown that a vortex does not
carry topological charge when it is oriented [9], as it is the
case in the present calculation. The only relevant property
seems to be a sufficiently large flux.
It is noteworthy that the zero-modes, with the excep-

tion of the l = 1/2 one in the instanton case, are not lo-
calized, i.e. do not vanish at spatial infinity. Especially
the vortex zero-modes do still vary appreciably even in
radial direction at spatial infinity. This indicates that even-

9 As vortex configurations appear as physical excitations in
lattice calculations [69, 70], this seems likely.

tually non-localized modes may be important in the con-
finement problem. This is supported by similar observa-
tions in recent lattice investigations of the covariant Lapla-
cian [71] and also of the Faddeev–Popov operator [48]. Also
in the context of the Gribov–Zwanziger scenario, the non-
localization of such modes play a role [36]. Still this issue
is not finally settled, and it is not yet really clear what the
significance of localization in this context is.
In addition, the vortex has been found to satisfy one ne-

cessary criterion for quark confinement in Coulomb gauge.
Thus, if all of these indications are correct, and such vor-
tices play a significant role in the dynamics of Yang–Mills
theory and eventually of QCD, they are perhaps the link
searched for in this work. Still, this will not apply to arbi-
trary gauge groups, as e.g. the gauge group G2 has a triv-
ial center and thus cannot support center vortices. It is
nonetheless confining in the sense that colored excitations
are absent from the physical spectrum, although not in
the Wilsonian sense with a asymptotically linearly ris-
ing potential [72]. In these cases, possibly different types
of topological excitations play a similar role as vortices
in SU(2).
Concluding, the following results have been found: In-

stantons belong to the common boundary of the first Gri-
bov region and the fundamental modular region, but only
support a small number of zero-modes, independent of the
size of the instanton. This shows that not all configurations
on the common boundary provide a significant enhance-
ment of the spectrum of the Faddeev–Popov operator at
eigenvalue zero. Instantons seem again not directly rele-
vant to confinement, but it is not clear whether an ensem-
ble of instantons can sustain more zero-modes.
Vortex-like configurations with flux zero and also cen-

ter vortices of flux one do not belong to the common
boundary nor even to the Gribov horizon and therefore
do not play any role in the Gribov–Zwanziger scenario.
This implies that not all topological field configurations
lie on the boundary nor provide zero-modes in the spec-
trum of the Faddeev–Popov operator. It should be noted
that thin center vortices of flux one observed in maximal
center gauge in lattice calculations do lie on the Gribov
horizon when they are transformed to maximal Coulomb
gauge [73]. However, besides some differing properties of
thin lattice vortices and thick continuum vortices, they are
after such a gauge transformation not necessarily center
elements anymore [73], thus, this result is not in direct con-
tradiction to the result here that a genuine Coulomb gauge
center vortex of flux one is not an element of the first Gri-
bov horizon.
Vortices of flux 2n+1≥ 3 belong to the Gribov horizon,

and lie always in the first Gribov region, although point-
wise |Aµ| is not bounded for large n. (Oriented) vortices
can support 4n zero-modes, and thus provide a signifi-
cant enhancement of the spectrum at zero of the Faddeev–
Popov operator. This corresponds to results in lattice cal-
culations that the enhancement of the spectrum of the
Faddeev–Popov operator vanishes when the vortex con-
tent is removed [52], yielding in Landau gauge an infrared
finite ghost propagator [74] and a modified gluon propaga-
tor [45, 46]. This indicates that perhaps the ghosts are the
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place to look for traces of topological excitations in func-
tional methods.
Finally, these results demonstrate that certain types

of topological configuration influence the spectrum of the
Faddeev–Popov operator and can give rise to the appear-
ance of zero-modes. Furthermore, it has been shown that
this strongly depends on the type of configuration, and
that even some configurations do not provide an enhance-
ment at eigenvalue zero. These results provide a first step
towards an analytical understanding of the intimate link
apparently existing between a confinement dominated by
topological aspects and the Gribov–Zwanziger scenario,
which are both by now well supported by various calcula-
tions. In addition, the results presented here also support
similar findings in numerical lattice calculations.

Acknowledgements. The author is grateful to Reinhard Alkofer

and Jan M. Pawlowski for valuable and inspiring discussions,
and to Jan M. Pawlowski also for a critical reading of and
helpful comments on this manuscript. This work was in part

supported by the DFG under grant number MA 3935/1-1.

References

1. R. Alkofer, L. von Smekal, Phys. Rep. 353, 281 (2001)
[arXiv:hep-ph/0007355] and references therein

2. J. Greensite, Prog. Part. Nucl. Phys. 51, 1 (2003) [arXiv:
hep-lat/0301023] and references therein

3. M.F. Atiyah, I.M. Singer, Ann. Math. 87, 484 (1968)
4. M.F. Atiyah, I.M. Singer, Ann. Math. 93, 119 (1971)
5. T. Banks, A. Casher, Nucl. Phys. B 169, 103 (1980)
6. S. Mandelstam, Phys. Rep. 23, 245 (1976)
7. G. ’t Hooft, in: High Energy Physics, ed. by A. Zichichi
(Editrice Compositori, Bologna, 1976)

8. G. ’t Hooft, Nucl. Phys. B 138, 1 (1978)
9. H. Reinhardt, Nucl. Phys. B 628, 133 (2002) [arXiv:hep-
th/0112215]

10. L. Del Debbio, M. Faber, J. Greensite, Š. Olejńık, Phys.
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